Finite Horizon Learning

نویسندگان

  • William Branch
  • George W. Evans
  • Bruce McGough
چکیده

Incorporating adaptive learning into macroeconomics requires assumptions about how agents incorporate their forecasts into their decision-making. We develop a theory of bounded rationality that we call finite-horizon learning. This approach generalizes the two existing benchmarks in the literature: Eulerequation learning, which assumes that consumption decisions are made to satisfy the one-step-ahead perceived Euler equation; and infinite-horizon learning, in which consumption today is determined optimally from an infinite-horizon optimization problem with given beliefs. In our approach, agents hold a finite forecasting/planning horizon. We find for the Ramsey model that the unique rational expectations equilibrium is E-stable at all horizons. However, transitional dynamics can differ significantly depending upon the horizon.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reinforcement Learning with Time

This paper steps back from the standard infinite horizon formulation of reinforcement learning problems to consider the simpler case of finite horizon problems. Although finite horizon problems may be solved using infinite horizon learning algorithms by recasting the problem as an infinite horizon problem over a state space extended to include time, we show that such an application of infinite ...

متن کامل

Two-warehouse system for non-instantaneous deterioration products with promotional effort and inflation over a finite time horizon

In the current global market, organizations use many promotional tools to increase their sales. One such tool is sales teams’ initiatives or promotional policies, i.e., free gifts, discounts, packaging, etc. This phenomenon motivates the retailer/or buyer to order a large inventory lot so as to take full benefit of promotional policies. In view of this the present paper considers a two-warehous...

متن کامل

Learning model-free robot control by a Monte Carlo EM algorithm

We address the problem of learning robot control by model-free reinforcement learning (RL). We adopt the probabilistic model of Vlassis and Toussaint (2009) for model-free RL, and we propose a Monte Carlo EM algorithm (MCEM) for control learning that searches directly in the space of controller parameters using information obtained from randomly generated robot trajectories. MCEM is related to,...

متن کامل

Effect of Reward Function Choices in MDPs with Value-at-Risk

This paper studies Value-at-Risk problems in finite-horizon Markov decision processes (MDPs) with finite state space and two forms of reward function. Firstly we study the effect of reward function on two criteria in a short-horizon MDP. Secondly, for long-horizon MDPs, we estimate the total reward distribution in a finite-horizon Markov chain (MC) with the help of spectral theory and the centr...

متن کامل

A Learning Rate Analysis of Reinforcement Learning Algorithms in Finite-Horizon

Many reinforcement learning algorithms, like Q-Learning or R-Learning, correspond to adaptative methods for solving Markovian decision problems in innnite-horizon when no model is available. In this article we consider the particular framework of non-stationary nite-horizon Markov Decision Processes. After establishing a relationship between the nite-horizon total reward criterion and the avera...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010